毛红威的论文被IJMHT接收

International Journal of Heat and Mass Transfer
2021

A novel pipe structure for geyser elimination in a vertical cryogenic pipe

HongweiMaoa b, YanzhongLia c, JiaojiaoWanga, YuanMaa, LeiWanga, BengtSundénb
aInstitute of Refrigeration & Cryogenic Engineering, Xi’an Jiaotong University, Xi’an, 710049, China
bDepartment of Energy Sciences, Lund University, Box 118, SE-22100 Lund, SwedencState Key Laboratory of Technologies in Space Cryogenic Propellants, Beijing, 100028, China

摘要:

In the present study, according to the recirculation concept, a new elimination structure for the geyser in a cryogenic pipe is proposed. An eccentric spacer plate is used to stimulate the recirculation inside the cryogenic pipe. The geyser-elimination effect of the proposed structure is then validated and the elimination physics is explored. It is found that the geyser is successfully eliminated by the stimulated recirculation. The main reason for the geyser elimination effect is the breakdown of the energy storage pattern along the axial direction of the pipe. Compared to the conventional structure, the total weight of the pipe system can be reduced by 25% in the new proposed structure. Moreover, the total heat input can also be reduced by as much as 40%. Furthermore, it is found that the system recirculation ability increases with increasing heat flux. The geyser elimination performance is validated to be effective under a wide heat flux range. Most importantly, the length of the bottom gap in the proposed structure has a critical effect on the geyser elimination since the ability to break down the energy storage becomes weaker as the gap length increases. In order to realize the geyser elimination effect, the bottom gap length is recommended to be 200 mm.